metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[*µ*-methylenebis(diphenylphosphine)]bis[(5-nitro-1,10-phenanthroline)silver(I)] bis(hexafluoridoantimonate)

Gangqiang Yin

Department of Chemistry, Guangdong Medical College, Zhanjiang 524023, People's Republic of China.

Correspondence e-mail: yingq666@sohu.com

Received 15 November 2007; accepted 14 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.030; wR factor = 0.060; data-to-parameter ratio = 10.1.

In the title compound, $[Ag_2(C_{12}H_7N_3O_2)_2(C_{25}H_{22}P_2)_2](SbF_6)_2$, the two Ag^I atoms are bridged by the two methylenebis(diphenylphosphine) ligands and an eight-membered centrosymmetric metallacyclic ring is formed. The metal atom exhibits a distorted tetrahedral coordination geometry, coordinated by two P atoms of the bridging ligands and two N atoms of the chelating 5-nitro-1,10-phenanthroline ligand. The latter ligand shows minor disorder, adopting two orientations with site occupancy factors of 0.84 and 0.16.

Related literature

For related literature, see: Ho & Bau (1983); Smith & Cagle (1947).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Ag}_2(\mathrm{C}_{12}\mathrm{H}_7\mathrm{N}_3\mathrm{O}_2)_2(\mathrm{C}_{25}\mathrm{H}_{22}\mathrm{P}_2)_2] \\ & (\mathrm{SbF}_6)_2 \\ & M_r = 1906.38 \\ & \mathrm{Monoclinic}, \ P2_1/n \\ & a = 12.8034 \ (7) \ \text{\AA} \\ & b = 23.3993 \ (10) \ \text{\AA} \\ & c = 13.5580 \ (11) \ \text{\AA} \end{split}$$

Data collection

Rigaku Mercury 70 CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2000) $T_{min} = 0.816$, $T_{max} = 1.000$ (expected range = 0.543–0.665)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.060$ S = 1.116301 reflections 623 parameters $\beta = 117.936 (2)^{\circ}$ $V = 3588.5 (4) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 1.46 \text{ mm}^{-1}$ T = 293 (2) K $0.35 \times 0.35 \times 0.28 \text{ mm}$

22441 measured reflections 6301 independent reflections 5851 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$

486 restraints H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.66 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.70 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

-			
Ag-N1	2.392 (6)	Ag-P1	2.4491 (7)
Ag-P2	2.3982 (7)	Ag-N2	2.451 (5)
N1 - Ag - P2	115.8 (3)	N1-Ag-N2	68.51 (15)
P1 = Ag = P1 P2 = Ag = P1	100.1 (3) 144.11 (3)	P2-Ag-N2 P1-Ag-N2	90.9 (2)

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2121).

References

Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Ho, D. M. & Bau, R. (1983). Inorg. Chem. 22, 4073-4079.

Rigaku (2000). CrystalClear. Version 1.3.6. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Smith, G. F. & Cagle, F. W. M. (1947). J. Org. Chem. 12, 781-784.

Acta Cryst. (2008). E64, m264 [doi:10.1107/S1600536807067013]

Bis[*µ*-methylenebis(diphenylphosphine)]bis[(5-nitro-1,10-phenanthroline)silver(I)] bis(hexafluoridoantimonate)

G. Yin

Comment

The title compound, $[Ag_2(methylenebis(diphenylphosphine))_2(5-nitro-1,10-phenanthroline)_2]$. $(SbF_6)_2$, is formed by selfassembly between the metal diphosphine compound $[Ag_2(methylenebis(diphenylphosphine))_2](SbF_6)_2$ and 5-nitro-1,10phenanthroline. In the crystal structure, the complex cation exists as a centrosymmetric dimer. Perspective view of the title compound is given in Fig. 1. The two methylenebis(diphenylphosphine) molecules bridge two Ag(5-nitro-1,10-phenanthroline) moleties to form an eight-membered Ag2P4C2 metallacyclic ring with the 5-nitro-1,10-phenanthroline ligand chelating Ag atoms. The P1—Ag—P2 angle of 144.11 (3)° is much larger than the N1—Ag—N2 angle of 68.59 (10)°, indicating a distorted tetrahedral coordination geometry around the silver atom.

Experimental

 $[Ag_2(methylenebis(diphenylphosphine))_2](SbF_6)_2$ (Ho & Bau,1983) and 5-nitro-1,10-phenanthroline (Smith & Cagle, 1947) were prepared according to the literature procedures. The title compound was prepared by reacting 0.25 mmol of $[Ag_2(bis(diphenylphosphino)_2](SbF_6)_2$ with 0.5 mmol 5-nitro-1,10-phenanthroline in 15 ml CH₃CN at room temperature for 1 h. The resulting mixture was evaporated to dryness using Schlenk techniques. The solid product was recrystallized from a mixture of 15 ml CH₂Cl₂ and 10 ml CH₃OH giving yellow crystals suitable for X-ray analysis.

Refinement

All H atoms were included in calculated positions with C—H = 0.93 Å to 0.97 Å with $U_{iso}(H) = 1.2U_{eq}(C)$. Large anisotropic displacement parameters of the phenathroline ligand and two high residual peaks in a differce map indicated a possible disorder of this ligand with the residual peaks attributed to a second position of the nitro group. The disorder of the 5-nitro-1,10-phenanthroline fragment was resolved into two partial-occupancy orientations and the occupancy factors were refined at 0.842 (4) and 0.158 (4). The atoms from the disordered unit were refined with the 'SIMU 0.01' restraint.

Figures

Fig. 1. *ORTEP* view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level and all hydrogen atoms were omitted for clarity. Atoms with the suffix A were generated by the symmetery operation -x, -y, 2 - z.

Fig. 2. Crystal packing of the title compound

Bis[µ-methylenebis(diphenylphosphine)]bis[(5-nitro-1,10- phenanthroline)silver(I)] bis(hexafluoridoantimonate)

Crystal data	
$[Ag_2(C_{12}H_7N_3O_2)_2(C_{25}H_{22}P_2)_2](SbF_6)_2$	$F_{000} = 1880$
$M_r = 1906.38$	$D_{\rm x} = 1.764 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 7865 reflections
a = 12.8034 (7) Å	$\theta = 3.0 - 25.0^{\circ}$
<i>b</i> = 23.3993 (10) Å	$\mu = 1.46 \text{ mm}^{-1}$
c = 13.5580 (11) Å	T = 293 (2) K
$\beta = 117.936 \ (2)^{\circ}$	Prism, yellow
$V = 3588.5 (4) \text{ Å}^3$	$0.35\times0.35\times0.28~mm$
Z = 2	

Data collection

Rigaku Mercury 70 CCD diffractometer	6301 independent reflections
Radiation source: fine-focus sealed tube	5851 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)	$k = -27 \rightarrow 26$
$T_{\min} = 0.816, T_{\max} = 1.000$	$l = -16 \rightarrow 15$
22441 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.060$	$w = 1/[\sigma^2(F_o^2) + (0.0186P)^2 + 5.1P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} = 0.002$
6301 reflections	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
623 parameters	$\Delta \rho_{\rm min} = -0.70 \ e \ {\rm \AA}^{-3}$

Extinction correction: none

486 restraints Primary atom site location: structure-invariant direct methods

Special details

Experimental. 2007–03-05 # Formatted by publCIF

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ag	0.023652 (17)	-0.075515 (9)	1.091671 (17)	0.01867 (6)	
P1	-0.17901 (6)	-0.06326 (3)	0.94206 (6)	0.01775 (16)	
P2	0.19380 (6)	-0.02588 (3)	1.22857 (6)	0.01697 (15)	
C21	-0.2634 (2)	-0.00996 (12)	0.9721 (2)	0.0216 (6)	
C22	-0.3864 (3)	-0.00586 (13)	0.9110 (3)	0.0247 (7)	
H22A	-0.4286	-0.0325	0.8555	0.030*	
C23	-0.4457 (3)	0.03785 (14)	0.9330 (3)	0.0326 (8)	
H23A	-0.5274	0.0409	0.8913	0.039*	
C24	-0.3838 (3)	0.07685 (15)	1.0167 (3)	0.0401 (9)	
H24A	-0.4241	0.1059	1.0315	0.048*	
C25	-0.2625 (3)	0.07299 (15)	1.0786 (3)	0.0385 (8)	
H25A	-0.2211	0.0992	1.1351	0.046*	
C26	-0.2027 (3)	0.02995 (13)	1.0562 (3)	0.0280 (7)	
H26A	-0.1209	0.0276	1.0977	0.034*	
C31	-0.2520 (2)	-0.13177 (12)	0.9320 (2)	0.0205 (6)	
C32	-0.2280 (2)	-0.17707 (13)	0.8787 (2)	0.0253 (7)	
H32A	-0.1866	-0.1703	0.8389	0.030*	
C33	-0.2651 (3)	-0.23201 (13)	0.8845 (3)	0.0313 (8)	
H33A	-0.2483	-0.2620	0.8491	0.038*	
C34	-0.3271 (3)	-0.24197 (14)	0.9432 (3)	0.0357 (8)	
H34A	-0.3513	-0.2789	0.9480	0.043*	
C35	-0.3532 (3)	-0.19762 (15)	0.9945 (3)	0.0351 (8)	
H35A	-0.3960	-0.2046	1.0329	0.042*	
C36	-0.3163 (2)	-0.14242 (14)	0.9894 (3)	0.0274 (7)	
H36A	-0.3343	-0.1126	1.0242	0.033*	
C41	0.1816 (2)	-0.02647 (12)	1.3574 (2)	0.0200 (6)	
C42	0.2094 (3)	-0.07752 (14)	1.4183 (3)	0.0275 (7)	
H42A	0.2376	-0.1085	1.3948	0.033*	
C43	0.1952 (3)	-0.08225 (15)	1.5130 (3)	0.0330 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H43A	0.2131	-0.1165	1.5525	0.040*	
C44	0.1546 (3)	-0.03626 (16)	1.5490 (3)	0.0353 (8)	
H44A	0.1466	-0.0393	1.6135	0.042*	
C45	0.1261 (3)	0.01406 (15)	1.4896 (3)	0.0352 (8)	
H45A	0.0983	0.0449	1.5138	0.042*	
C46	0.1388 (3)	0.01893 (13)	1.3932 (3)	0.0261 (7)	
H46A	0.1185	0.0529	1.3528	0.031*	
C51	0.3399 (2)	-0.05683 (13)	1.2753 (2)	0.0206 (6)	
C52	0.3518 (3)	-0.10922 (13)	1.2338 (3)	0.0283 (7)	
H52A	0.2852	-0.1281	1.1808	0.034*	
C53	0.4631 (3)	-0.13370 (15)	1.2712 (3)	0.0389 (9)	
H53A	0.4709	-0.1688	1.2430	0.047*	
C54	0.5617 (3)	-0.10585 (16)	1.3500 (3)	0.0371 (8)	
H54A	0.6360	-0.1223	1.3751	0.044*	
C55	0.5510 (3)	-0.05397 (16)	1.3916 (3)	0.0349 (8)	
H55A	0.6182	-0.0352	1.4439	0.042*	
C56	0.4403 (2)	-0.02935 (14)	1.3558 (3)	0.0262 (7)	
H56A	0.4332	0.0054	1.3856	0.031*	
C61	-0.2118 (2)	-0.04967 (12)	0.7965 (2)	0.0206 (6)	
H61A	-0.1595	-0.0726	0.7791	0.025*	
H61B	-0.2924	-0.0613	0.7469	0.025*	
C1	0.0907 (6)	-0.1990 (2)	1.0194 (7)	0.0286 (12)	0.842 (4)
H1A	0.1206	-0.1748	0.9843	0.034*	0.842 (4)
C2	0.0947 (6)	-0.2583(2)	1.0054 (5)	0.0438 (16)	0.842 (4)
H2A	0.1270	-0.2729	0.9619	0.053*	0.842 (4)
C3	0.0510 (5)	-0.2940(2)	1.0557 (5)	0.0445 (16)	0.842 (4)
H3A	0.0541	-0.3332	1.0471	0.053*	0.842 (4)
C4	0.0010 (5)	-0.2723(2)	1.1206 (4)	0.0338 (12)	0.842 (4)
C5	-0.0497 (5)	-0.3045 (2)	1.1798 (5)	0.0424 (17)	0.842 (4)
C6	-0.1018 (4)	-0.2802(2)	1.2341 (4)	0.0427 (13)	0.842 (4)
H6A	-0.1364	-0.3033	1.2666	0.051*	0.842 (4)
C7	-0.1057(5)	-0.2198(2)	1.2435 (4)	0.0323 (12)	0.842 (4)
C8	-0.1592(4)	-0.1931(2)	1 3008 (4)	0.0411 (12)	0.842(4)
H8A	-0 1969	-0.2146	1 3324	0.049*	0.842(4)
C9	-0.1552(5)	-0.1351(2)	1 3094 (4)	0.0417(12)	0.842(4)
Н9А	-0.1903	-0.1165	1 3468	0.050*	0.842(4)
C10	-0.0977(5)	-0.1041(2)	1.2612 (5)	0.0326 (13)	0.842(4)
H10A	-0.0943	-0.0646	1 2690	0.039*	0.842(4)
C11	-0.0517(5)	-0.18563(19)	1 1947 (5)	0.0235 (10)	0.842(1)
C12	0.0017(3)	-0.2113(2)	1 1323 (5)	0.0253(10) 0.0251(11)	0.842(1)
N1	0.0456 (9)	-0.1765(2)	1.0812 (9)	0.0231(11) 0.0238(10)	0.842(1)
N2	-0.0478(8)	-0.12770(18)	1.0012(7)	0.0238(10) 0.0233(10)	0.842(4)
N2 N3	-0.0478(3)	-0.36777(18)	1.2030 (7)	0.0233 (10)	0.842(4)
01	-0.00420(4)	-0.39241(17)	1.1305 (4)	0.0070(10)	0.842(4)
02	-0.0729 (8)	-0.3010(2)	1.1320 (0)	0.121(3) 0.095(3)	0.072(4)
02	0.0729(0) 0.110(4)	-0.1002(12)	1.2433(0)	0.075(3)	0.042(4)
	0.110 (4)	0.1903 (13)	0.0842	0.025 (3)	0.158 (4)
	0.1420	0.1020	0.9042	0.027	0.158 (4)
	0.110(3)	-0.2461(13)	0.907 (3)	0.027 (4)	0.158 (4)
H2'A	0.1480	-0.2585	0.9405	0.032*	0.158 (4)

C3'	0.075 (3)	-0.2885 (12)	1.031 (3)	0.028 (4)	0.158 (4)
H3'A	0.0816	-0.3269	1.0173	0.034*	0.158 (4)
C4'	0.023 (3)	-0.2733 (11)	1.098 (3)	0.024 (3)	0.158 (4)
C5'	-0.026 (2)	-0.3121 (10)	1.149 (2)	0.026 (4)	0.158 (4)
H5'A	-0.0234	-0.3511	1.1372	0.031*	0.158 (4)
C6'	-0.074 (3)	-0.2941 (10)	1.210 (3)	0.032 (4)	0.158 (4)
C7'	-0.086 (3)	-0.2346 (9)	1.228 (3)	0.026 (3)	0.158 (4)
C8'	-0.129 (2)	-0.2136 (10)	1.299 (2)	0.031 (4)	0.158 (4)
H8'A	-0.1587	-0.2390	1.3318	0.037*	0.158 (4)
C9'	-0.127 (3)	-0.1569 (10)	1.320 (2)	0.031 (3)	0.158 (4)
H9'A	-0.1576	-0.1433	1.3656	0.038*	0.158 (4)
C10'	-0.079 (3)	-0.1187 (11)	1.271 (3)	0.031 (3)	0.158 (4)
H10B	-0.0756	-0.0798	1.2862	0.037*	0.158 (4)
C11'	-0.034 (3)	-0.1943 (10)	1.185 (3)	0.025 (3)	0.158 (4)
C12'	0.012 (4)	-0.2131 (11)	1.114 (3)	0.022 (3)	0.158 (4)
N1'	0.059 (6)	-0.1739 (13)	1.072 (5)	0.020 (3)	0.158 (4)
N2'	-0.038 (5)	-0.1379 (11)	1.204 (4)	0.023 (3)	0.158 (4)
N3'	-0.1201 (15)	-0.3401 (8)	1.2576 (16)	0.040 (3)	0.158 (4)
O2'	-0.1967 (14)	-0.3283 (7)	1.2810 (14)	0.049 (3)	0.158 (4)
O1'	-0.091 (4)	-0.3889 (11)	1.259 (4)	0.033 (3)	0.158 (4)
Sb	0.035784 (19)	0.195912 (9)	1.342401 (19)	0.03131 (7)	
F1	-0.0552 (2)	0.15895 (13)	1.3963 (3)	0.0868 (9)	
F2	-0.09810 (19)	0.23510 (10)	1.2379 (2)	0.0632 (7)	
F3	0.12724 (18)	0.23192 (9)	1.28696 (18)	0.0447 (5)	
F4	0.0682 (2)	0.25534 (10)	1.4442 (2)	0.0624 (7)	
F5	0.0064 (2)	0.13675 (9)	1.23847 (18)	0.0559 (6)	
F6	0.16940 (18)	0.15634 (9)	1.44683 (17)	0.0461 (5)	

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ag	0.01518 (11)	0.01797 (12)	0.02097 (11)	-0.00183 (8)	0.00690 (9)	-0.00001 (9)
P1	0.0148 (3)	0.0175 (4)	0.0195 (4)	-0.0012 (3)	0.0069 (3)	0.0020 (3)
P2	0.0140 (3)	0.0155 (4)	0.0193 (4)	-0.0006 (3)	0.0060 (3)	0.0015 (3)
C21	0.0220 (14)	0.0207 (16)	0.0236 (15)	0.0009 (12)	0.0119 (13)	0.0042 (12)
C22	0.0219 (15)	0.0260 (17)	0.0288 (16)	-0.0009 (13)	0.0141 (13)	0.0049 (13)
C23	0.0249 (16)	0.037 (2)	0.041 (2)	0.0085 (15)	0.0203 (15)	0.0085 (16)
C24	0.044 (2)	0.034 (2)	0.054 (2)	0.0089 (17)	0.0326 (19)	-0.0018 (18)
C25	0.0392 (19)	0.035 (2)	0.045 (2)	-0.0055 (16)	0.0229 (17)	-0.0149 (17)
C26	0.0250 (15)	0.0286 (17)	0.0316 (17)	-0.0025 (14)	0.0142 (14)	-0.0036 (14)
C31	0.0122 (13)	0.0225 (16)	0.0190 (14)	-0.0032 (12)	0.0007 (11)	0.0047 (12)
C32	0.0190 (14)	0.0256 (17)	0.0229 (16)	-0.0019 (13)	0.0027 (13)	0.0019 (13)
C33	0.0229 (16)	0.0212 (17)	0.0294 (17)	-0.0023 (13)	-0.0048 (14)	0.0023 (14)
C34	0.0225 (16)	0.0249 (18)	0.0349 (19)	-0.0070 (14)	-0.0071 (15)	0.0109 (15)
C35	0.0212 (16)	0.043 (2)	0.0323 (18)	-0.0082 (15)	0.0050 (14)	0.0169 (16)
C36	0.0175 (14)	0.0321 (18)	0.0274 (16)	-0.0026 (13)	0.0062 (13)	0.0065 (14)
C41	0.0125 (13)	0.0241 (16)	0.0199 (14)	-0.0032 (12)	0.0047 (12)	0.0002 (12)
C42	0.0230 (15)	0.0291 (18)	0.0303 (17)	0.0016 (13)	0.0125 (14)	0.0067 (14)

C43	0.0233 (16)	0.043 (2)	0.0299 (17)	-0.0013 (15)	0.0099 (14)	0.0136 (16)
C44	0.0332 (18)	0.052 (2)	0.0255 (17)	-0.0073 (17)	0.0174 (15)	0.0033 (16)
C45	0.0382 (19)	0.038 (2)	0.0373 (19)	-0.0051 (16)	0.0239 (16)	-0.0075 (16)
C46	0.0263 (16)	0.0243 (17)	0.0310 (17)	-0.0030 (13)	0.0161 (14)	0.0007 (13)
C51	0.0165 (13)	0.0235 (16)	0.0209 (15)	0.0007 (12)	0.0080 (12)	0.0062 (12)
C52	0.0208 (15)	0.0215 (17)	0.0403 (19)	-0.0008 (13)	0.0124 (14)	-0.0002 (14)
C53	0.0352 (19)	0.0238 (18)	0.061 (2)	0.0089 (15)	0.0247 (18)	0.0045 (17)
C54	0.0205 (16)	0.043 (2)	0.047 (2)	0.0121 (15)	0.0152 (16)	0.0166 (17)
C55	0.0158 (15)	0.048 (2)	0.0332 (18)	-0.0019 (15)	0.0055 (14)	0.0064 (16)
C56	0.0196 (15)	0.0296 (18)	0.0288 (16)	-0.0015 (13)	0.0108 (13)	-0.0024 (14)
C61	0.0222 (14)	0.0162 (15)	0.0237 (15)	-0.0003 (12)	0.0111 (13)	0.0000 (12)
C1	0.026 (3)	0.029 (3)	0.026 (2)	0.005 (2)	0.0082 (18)	-0.001 (2)
C2	0.047 (3)	0.035 (3)	0.039 (3)	0.012 (3)	0.011 (2)	-0.007 (3)
C3	0.047 (3)	0.021 (2)	0.038 (3)	0.011 (2)	-0.002 (2)	-0.006 (2)
C4	0.028 (3)	0.0185 (19)	0.028 (3)	0.0031 (17)	-0.0086 (17)	0.0019 (18)
C5	0.035 (3)	0.017 (2)	0.037 (4)	-0.007 (2)	-0.015 (2)	0.014 (2)
C6	0.033 (2)	0.039 (3)	0.032 (2)	-0.013 (2)	-0.0048 (18)	0.017 (2)
C7	0.026 (2)	0.040 (3)	0.018 (2)	-0.014(2)	0.0001 (17)	0.007 (2)
C8	0.034 (3)	0.064 (4)	0.024 (2)	-0.023 (2)	0.0132 (19)	0.002 (2)
С9	0.037 (3)	0.060 (3)	0.033 (2)	-0.018 (2)	0.020 (2)	-0.011 (2)
C10	0.030 (3)	0.042 (3)	0.029 (2)	-0.012 (2)	0.017 (2)	-0.011 (2)
C11	0.016 (2)	0.028 (2)	0.0144 (18)	-0.0046 (17)	-0.0025 (14)	0.0035 (17)
C12	0.020 (2)	0.0213 (18)	0.020 (3)	-0.0026 (16)	-0.0031 (16)	0.0098 (17)
N1	0.019 (3)	0.0228 (18)	0.022 (3)	0.0015 (16)	0.0032 (14)	-0.0027 (16)
N2	0.022 (2)	0.025 (2)	0.0200 (16)	-0.008 (2)	0.0071 (15)	-0.002 (2)
N3	0.038 (2)	0.026 (2)	0.081 (3)	-0.008(2)	-0.020(2)	0.018 (2)
01	0.086 (3)	0.023 (2)	0.269 (8)	0.004 (2)	0.097 (4)	0.008 (3)
02	0.114 (7)	0.034 (3)	0.066 (5)	-0.031 (3)	-0.016 (3)	0.030 (3)
C1'	0.024 (5)	0.024 (5)	0.023 (5)	0.004 (5)	0.014 (4)	-0.001 (4)
C2'	0.029 (6)	0.025 (6)	0.029 (5)	0.001 (5)	0.016 (5)	0.001 (5)
C3'	0.033 (6)	0.023 (5)	0.030 (6)	0.007 (5)	0.016 (5)	-0.004 (5)
C4'	0.023 (5)	0.020 (4)	0.023 (5)	0.001 (4)	0.007 (4)	0.003 (4)
C5'	0.024 (5)	0.019 (5)	0.025 (6)	-0.004 (5)	0.003 (5)	0.007 (5)
C6'	0.028 (5)	0.028 (5)	0.029 (5)	-0.007 (5)	0.004 (5)	0.010 (5)
C7'	0.021 (4)	0.032 (5)	0.019 (4)	-0.006 (4)	0.004 (4)	0.003 (4)
C8'	0.025 (5)	0.039 (6)	0.023 (5)	-0.011 (5)	0.007 (5)	0.000 (5)
C9'	0.028 (5)	0.046 (5)	0.025 (4)	-0.012 (5)	0.016 (4)	-0.005 (5)
C10'	0.028 (5)	0.037 (5)	0.026 (4)	-0.012 (5)	0.012 (4)	-0.003(5)
C11'	0.021 (4)	0.022 (4)	0.019 (4)	-0.010 (4)	-0.001 (4)	0.005 (4)
C12'	0.019 (4)	0.022 (4)	0.019 (5)	0.002 (4)	0.004 (4)	-0.001 (4)
N1'	0.020 (5)	0.022 (4)	0.019 (5)	-0.005 (4)	0.009 (4)	0.006 (4)
N2'	0.022 (5)	0.033 (5)	0.017 (4)	-0.008(5)	0.010 (4)	-0.002(5)
N3'	0.040 (5)	0.039 (5)	0.043 (5)	-0.007 (5)	0.021 (4)	0.018 (5)
O2'	0.045 (6)	0.043 (6)	0.053 (6)	-0.007 (5)	0.019 (5)	0.020 (5)
01'	0.039 (5)	0.038 (6)	0.036 (6)	-0.006 (5)	0.030 (5)	0.015 (5)
Sb	0.03320 (12)	0.02695 (13)	0.03999 (14)	0.00654 (9)	0.02232 (11)	0.00912 (10)
F1	0.0786 (18)	0.091 (2)	0.119 (2)	-0.0047 (16)	0.0694 (19)	0.0431 (19)
F2	0.0377 (12)	0.0606 (16)	0.0893 (18)	0.0241 (11)	0.0282 (13)	0.0301 (14)
F3	0.0464 (12)	0.0476 (13)	0.0557 (13)	0.0058 (10)	0.0370 (11)	0.0089 (10)
	、 /	· /	· /	· /	× /	· /

F5 $0.0565(14)$ $0.0377(12)$ $0.0437(13)$ $0.0067(11)$ $-0.0013(11)$ F6 $0.0489(12)$ $0.0339(11)$ $0.0392(12)$ $0.0060(10)$ $0.0070(10)$ Geometric parameters (Å, °)Ag—N1 $2.392(6)$ C1—N1 $1.329(3)$ Ag—P2 $2.3982(7)$ C1—C2 $1.404(6)$ Ag—N1' $2.38(3)$ C1—H1A 0.9300 Ag—N2' $2.49(3)$ C2—C3 $1.353(6)$ Ag—N2 $2.449(17)$ C2—H2A 0.9300 Ag—N2 $2.451(5)$ C3—C4 $1.403(6)$ P1—C21 $1.817(3)$ C3—H3A 0.9300 P1—C31 $1.828(3)$ C4—C12 $1.437(6)$	-0.0024 (10) 0.0053 (9) (5) (6) (7)
F6 $0.0489(12)$ $0.0339(11)$ $0.0392(12)$ $0.0060(10)$ $0.0070(10)$ Geometric parameters (Å, °)Ag—N1 $2.392(6)$ C1—N1 $1.329(2)$ Ag—P2 $2.3982(7)$ C1—C2 $1.404(2)$ Ag—N1' $2.38(3)$ C1—H1A 0.9300 Ag—N2' $2.49(3)$ C2—C3 $1.353(2)$ Ag—N2 $2.449(3)$ C2—H2A 0.9300 Ag—N2 $2.451(5)$ C3—C4 $1.403(2)$ P1—C21 $1.817(3)$ C3—H3A 0.9300 P1—C31 $1.828(3)$ C4—C12 $1.437(2)$	0.0053 (9) (5) (6) (7)
Geometric parameters (Å, °)Ag—N12.392 (6)C1—N11.329 (3)Ag—P22.3982 (7)C1—C21.404 (4)Ag—N1'2.38 (3)C1—H1A0.9300Ag—N2'2.49 (3)C2—C31.353 (7)Ag—P12.4491 (7)C2—H2A0.9300Ag—N22.451 (5)C3—C41.403 (7)P1—C211.817 (3)C3—H3A0.9300P1—C311.828 (3)C4—C121.437 (7)	(5) (6) (7)
Ag—N1 2.392 (6) C1—N1 1.329 (c) Ag—P2 2.3982 (7) C1—C2 1.404 (c) Ag—N1' 2.38 (3) C1—H1A 0.9300 Ag—N2' 2.49 (3) C2—C3 1.353 (c) Ag—N2 2.4491 (7) C2—H2A 0.9300 Ag—N2 2.451 (5) C3—C4 1.403 (c) P1—C21 1.817 (3) C3—H3A 0.9300 P1—C31 1.828 (3) C4—C12 1.437 (c)	(5) (6) (7)
AgNI $2.392 (6)$ C1 $1.329 (c)$ AgP2 $2.3982 (7)$ C1 $-C2$ $1.404 (c)$ AgN1' $2.38 (3)$ C1 $-H1A$ 0.9300 AgN2' $2.49 (3)$ C2 $-C3$ $1.353 (c)$ AgP1 $2.4491 (7)$ C2 $H2A$ 0.9300 AgN2 $2.451 (5)$ C3 $C4$ $1.403 (c)$ P1 $-C21$ $1.817 (3)$ C3 $H3A$ 0.9300 P1 $-C31$ $1.828 (3)$ C4 $-C12$ $1.437 (c)$	(5) (6) (7)
Ag—P2 $2.3982 (7)$ C1—C2 $1.404 (6)$ Ag—N1' $2.38 (3)$ C1—H1A 0.9300 Ag—N2' $2.49 (3)$ C2—C3 $1.353 (7)$ Ag—P1 $2.4491 (7)$ C2—H2A 0.9300 Ag—N2 $2.451 (5)$ C3—C4 $1.403 (7)$ P1—C21 $1.817 (3)$ C3—H3A 0.9300 P1—C31 $1.828 (3)$ C4—C12 $1.437 (7)$	(6) (7)
Ag—N1 ^r 2.38 (3) C1—H1A 0.9300 Ag—N2 ^r 2.49 (3) C2—C3 1.353 (Ag—P1 2.4491 (7) C2—H2A 0.9300 Ag—N2 2.451 (5) C3—C4 1.403 (P1—C21 1.817 (3) C3—H3A 0.9300 P1—C31 1.828 (3) C4—C12 1.437 (5)	(7) (7)
Ag—N2* 2.49 (3) C2—C3 1.353 (Ag—P1 2.4491 (7) C2—H2A 0.9300 Ag—N2 2.451 (5) C3—C4 1.403 (* P1—C21 1.817 (3) C3—H3A 0.9300 P1—C31 1.828 (3) C4—C12 1.437 (*	(7) ((7)
Ag—P1 2.4491 (7) C2—H2A 0.9300 Ag—N2 2.451 (5) C3—C4 1.403 (2000) P1—C21 1.817 (3) C3—H3A 0.9300 P1—C31 1.828 (3) C4—C12 1.437 (2000)	· 7)
Ag—N2 2.451 (5) C3—C4 1.403 (P1—C21 1.817 (3) C3—H3A 0.9300 P1—C31 1.828 (3) C4—C12 1.437 (s)	· /)
P1-C21 $1.817(3)$ C3-H3A 0.9300 P1-C31 $1.828(3)$ C4-C12 $1.437(3)$	
P1-C31 1.828 (3) $C4-C12$ 1.437 (3)	
$P_1 = O(1) = 1.042(2) = O(1) = O(1) = 1.457(0)$	(5)
P1 - C01 1.845 (3) C4 - C5 1.457 (6) 1.457	(8)
P2 = C31 1.821 (3) C3 = C6 1.330 (P2 = C41 1.825 (2) C5 = N2 1.482 (()
P2 = -C41 1.825 (3) C5 = N5 1.485 (4) 1.485	(0) (7)
$P_2 = C_0 I^2$ 1.055 (5) $C_0 = C^7$ 1.424 (()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$C_{21} = C_{22}$ 1.398 (4) $C_{1} = C_{8}$ 1.400 ((7)
C_{22} C_{23} C	(J)
C_{22} C_{24} C	
$C_{23} = C_{24} = C_{23} = C_{24} = C_{23} = C_{23} = C_{23} = C_{24} = C_{23} = C_{23} = C_{24} = C_{23} = C_{24} = C$	(6)
$C_{22} = 1125 \text{A}$ 0.3500 $C_{22} = C_{10}$ 1.353 ($C_{24} = C_{25}$ 1.380 (5) $C_{24} = H_{0,4}$ 0.9300	(0)
$C_{24} = C_{25} = 0.3300 (5) $	(5)
$C_{24} = 124 R$ $C_{10} = 100 R_2$ $C_{10} = 100 $	3)
C25_H25A 0 9300 C11_N2 1 361 ((5)
C_{25} — H_{25} A 0.9300 C_{11} — C_{12} 1.301 (.	(6)
$C_{20} = 120 R$ $C_{12} = 0.5500$ $C_{11} = 0.22 C_{12} = 0.120 R$ $C_{12} = 0.120 R$	(5)
$C_{31} = C_{32}$ $C_{32} = C_{32} = C$	(8)
(32-C33) 1 385 (4) N3-01 1 198 ((7)
C32—H32A 0.9300 C1'—N1' 1.325 ((17)
C33-C34 1 382 (5) C1'-C2' 1 405 ((17)
C33—H33A 0.9300 C1'—H1'A 0.9300	
C34—C35 1.376 (5) C2'—C3' 1.350 ((18)
C34—H34A 0.9300 C2'—H2'A 0.9300)
C35—C36 1.388 (4) C3'—C4' 1.397 ((17)
C35—H35A 0.9300 C3'—H3'A 0.9300	1
C36—H36A 0.9300 C4'—C12' 1.440 ((16)
C41—C46 1.383 (4) C4'—C5' 1.447 ((17)
C41—C42 1.400 (4) C5'—C6' 1.322 ((19)
C42—C43 1.384 (4) C5'—H5'A 0.9300)
C42—H42A 0.9300 C6'—C7' 1.435 ((18)
C43—C44 1.379 (5) C6'—N3' 1.50 (3	5)
C43—H43A 0.9300 C7'—C8' 1.387 ((17)
C44—C45 1.376 (5) C7'—C11' 1.429 ((16)
C44—H44A 0.9300 C8'—C9' 1.357 ((18)
C45—C46 1.396 (4) C8'—H8'A 0.9300	

C45—H45A	0.9300	C9'—C10'	1.417 (17)
C46—H46A	0.9300	С9'—Н9'А	0.9300
C51—C52	1.386 (4)	C10'—N2'	1.324 (17)
C51—C56	1.394 (4)	C10'—H10B	0.9300
C52—C53	1.392 (4)	C11'—N2'	1.349 (16)
C52—H52A	0.9300	C11'—C12'	1.420 (16)
C53—C54	1.376 (5)	C12'—N1'	1.354 (16)
С53—Н53А	0.9300	N3'—O2'	1.197 (16)
C54—C55	1.372 (5)	N3'—O1'	1.197 (19)
C54—H54A	0.9300	Sb—F1	1.853 (2)
C55—C56	1.390 (4)	Sb—F3	1.8630 (19)
С55—Н55А	0.9300	Sb—F4	1.864 (2)
С56—Н56А	0.9300	Sb—F2	1.874 (2)
$C61 - P2^{i}$	1.835 (3)	Sb—F6	1.8759 (19)
С61—Н61А	0.9700	Sb—F5	1.883 (2)
С61—Н61В	0.9700		
N1 Ag D2	115.9 (2)	N1 C1 C2	122 1 (5)
N1 - Ag - P2	113.8(3)	NI = CI = UIA	122.1 (3)
$\frac{NI}{Ag} = \frac{NI}{Ag}$	0.2(7)	NI = CI = HIA	119.0
P2—Ag—N1	(13.8(17))	$C_2 = C_1 = HIA$	119.0
N1 - Ag - N2	62.3(6)	$C_3 = C_2 = C_1$	119.4 (5)
P2—Ag—N2	104.1 (13)	$C_3 = C_2 = H_2 A$	120.3
NI'—Ag—N2'	68.3 (7)	C1—C2—H2A	120.3
NI—Ag—PI	100.1 (3)	C2—C3—C4	120.7 (4)
P2—Ag—P1	144.11 (3)	С2—С3—НЗА	119.6
N1'—Ag—P1	101.7 (17)	С4—С3—НЗА	119.6
N2'—Ag—P1	93.4 (14)	C3—C4—C12	117.1 (4)
N1—Ag—N2	68.51 (15)	C3—C4—C5	127.6 (4)
P2—Ag—N2	103.1 (2)	C12—C4—C5	115.2 (5)
N1'—Ag—N2	74.5 (6)	C6—C5—C4	123.5 (4)
N2'—Ag—N2	6.3 (7)	C6—C5—N3	115.5 (6)
P1—Ag—N2	90.9 (2)	C4—C5—N3	121.0 (6)
C21—P1—C31	106.38 (13)	C5—C6—C7	121.5 (5)
C21—P1—C61	105.11 (13)	С5—С6—Н6А	119.2
C31—P1—C61	102.66 (13)	С7—С6—Н6А	119.2
C21—P1—Ag	113.91 (10)	C8—C7—C11	118.9 (4)
C31—P1—Ag	105.39 (9)	C8—C7—C6	122.7 (4)
C61—P1—Ag	121.90 (9)	C11—C7—C6	118.4 (5)
C51—P2—C41	101.49 (13)	C9—C8—C7	118.9 (4)
$C51 - P2 - C61^{i}$	104.48 (13)	С9—С8—Н8А	120.5
$C41 - P2 - C61^{i}$	104.99 (13)	C7—C8—H8A	120.5
$C_{1} = P_{2} = \Delta g$	119 29 (10)	C_{8} C_{9} C_{10}	119.0 (5)
C41 - P2 - Ag	106.43 (9)	C_{8} C_{9} H_{9}	120.5
	100.43(7)		120.5
Col ⁻ -P2-Ag	110.08 (10)	C10-C9-H9A	120.5
C26—C21—C22	118.7 (3)	N2-C10-C9	123.8 (5)
C26—C21—P1	118.7 (2)	N2—C10—H10A	118.1
C22—C21—P1	122.5 (2)	C9—C10—H10A	118.1
C23—C22—C21	120.1 (3)	N2—C11—C7	121.3 (4)
C23—C22—H22A	119.9	N2—C11—C12	118.2 (4)

C21—C22—H22A	119.9	C7—C11—C12	120.5 (4)
C24—C23—C22	120.2 (3)	N1—C12—C4	120.8 (5)
C24—C23—H23A	119.9	N1-C12-C11	118.5 (4)
С22—С23—Н23А	119.9	C4—C12—C11	120.7 (4)
C25—C24—C23	120.4 (3)	C1—N1—C12	119.8 (4)
C25—C24—H24A	119.8	C1—N1—Ag	121.8 (4)
C23—C24—H24A	119.8	C12—N1—Ag	118.1 (3)
C24—C25—C26	119.7 (3)	C10—N2—C11	118.0 (4)
C24—C25—H25A	120.1	C10—N2—Ag	125.2 (3)
C26—C25—H25A	120.1	C11—N2—Ag	116.0 (3)
C25—C26—C21	120.9 (3)	O2—N3—O1	122.8 (6)
С25—С26—Н26А	119.5	O2—N3—C5	118.7 (7)
C21—C26—H26A	119.5	O1—N3—C5	118.6 (6)
C36—C31—C32	118.9 (3)	N1'—C1'—C2'	122 (2)
C36—C31—P1	122.0 (2)	N1'—C1'—H1'A	119.1
C32—C31—P1	118.4 (2)	C2'—C1'—H1'A	119.1
C33—C32—C31	120.7 (3)	C3'—C2'—C1'	119 (2)
С33—С32—Н32А	119.6	C3'—C2'—H2'A	120.3
C31—C32—H32A	119.6	C1'—C2'—H2'A	120.3
C34—C33—C32	119.6 (3)	C2'—C3'—C4'	120.9 (19)
С34—С33—Н33А	120.2	C2'—C3'—H3'A	119.6
С32—С33—Н33А	120.2	C4'—C3'—H3'A	119.6
C35—C34—C33	120.4 (3)	C3'—C4'—C12'	117.0 (16)
C35—C34—H34A	119.8	C3'—C4'—C5'	126.3 (18)
C33—C34—H34A	119.8	C12'—C4'—C5'	116.6 (16)
C34—C35—C36	120.5 (3)	C6'—C5'—C4'	123 (2)
C34—C35—H35A	119.8	C6'—C5'—H5'A	118.7
С36—С35—Н35А	119.8	C4'—C5'—H5'A	118.7
C35—C36—C31	119.9 (3)	C5'—C6'—C7'	122 (2)
С35—С36—Н36А	120.1	C5'—C6'—N3'	115.7 (19)
С31—С36—Н36А	120.1	C7'—C6'—N3'	121.9 (18)
C46—C41—C42	118.8 (3)	C8'—C7'—C6'	124.6 (17)
C46—C41—P2	123.7 (2)	C8'—C7'—C11'	117.2 (16)
C42—C41—P2	117.3 (2)	C6'—C7'—C11'	117.6 (17)
C43—C42—C41	120.5 (3)	C9'—C8'—C7'	121.4 (18)
C43—C42—H42A	119.7	C9'—C8'—H8'A	119.3
C41—C42—H42A	119.7	С7'—С8'—Н8'А	119.3
C44—C43—C42	120.0 (3)	C8'—C9'—C10'	118.9 (18)
C44—C43—H43A	120.0	C8'—C9'—H9'A	120.5
C42—C43—H43A	120.0	C10'—C9'—H9'A	120.5
C45—C44—C43	120.1 (3)	N2'—C10'—C9'	121 (2)
C45—C44—H44A	119.9	N2'—C10'—H10B	119.7
C43—C44—H44A	119.9	C9'—C10'—H10B	119.7
C44—C45—C46	120.2 (3)	N2'—C11'—C7'	120.3 (17)
C44—C45—H45A	119.9	N2'—C11'—C12'	119.5 (16)
C46—C45—H45A	119.9	C7'—C11'—C12'	120.0 (17)
C41—C46—C45	120.3 (3)	N1'—C12'—C4'	120.5 (17)
C41—C46—H46A	119.8	N1'—C12'—C11'	118.7 (17)
C45—C46—H46A	119.8	C4'—C12'—C11'	120.3 (17)

C52—C51—C56	119.3 (3)	C1'—N1'—C12'	120 (2)
C52—C51—P2	120.1 (2)	C1'—N1'—Ag	121.4 (17)
C56—C51—P2	120.6 (2)	C12'—N1'—Ag	117.8 (15)
C51—C52—C53	120.3 (3)	C10'—N2'—C11'	121.4 (19)
С51—С52—Н52А	119.9	C10'—N2'—Ag	124.1 (16)
С53—С52—Н52А	119.9	C11'—N2'—Ag	114.3 (14)
C54—C53—C52	119.8 (3)	O2'—N3'—O1'	120.1 (19)
С54—С53—Н53А	120.1	O2'—N3'—C6'	118.5 (18)
С52—С53—Н53А	120.1	O1'—N3'—C6'	121 (2)
C55—C54—C53	120.4 (3)	F1—Sb—F3	179.02 (13)
C55—C54—H54A	119.8	F1—Sb—F4	91.09 (13)
C53—C54—H54A	119.8	F3—Sb—F4	89.86 (10)
C54—C55—C56	120.3 (3)	F1—Sb—F2	90.32 (12)
С54—С55—Н55А	119.8	F3—Sb—F2	89.92 (10)
С56—С55—Н55А	119.8	F4—Sb—F2	90.14 (12)
C55—C56—C51	119.8 (3)	F1—Sb—F6	89.50 (11)
С55—С56—Н56А	120.1	F3—Sb—F6	90.25 (9)
С51—С56—Н56А	120.1	F4—Sb—F6	90.09 (10)
P2 ⁱ —C61—P1	112.26 (15)	F2—Sb—F6	179.72 (11)
P2 ⁱ —C61—H61A	109.2	F1—Sb—F5	90.56 (14)
Р1—С61—Н61А	109.2	F3—Sb—F5	88.49 (10)
P2 ⁱ —C61—H61B	109.2	F4—Sb—F5	178.33 (11)
Р1—С61—Н61В	109.2	F2—Sb—F5	90.13 (11)
H61A—C61—H61B	107.9	F6—Sb—F5	89.65 (9)
N1—Ag—P1—C21	143.06 (17)	C61 ⁱ —P2—C51—C56	46.3 (3)
P2—Ag—P1—C21	-39.37 (11)	Ag—P2—C51—C56	-179.1 (2)
N1'—Ag—P1—C21	149.1 (6)	C56—C51—C52—C53	-0.9 (5)
N2'—Ag—P1—C21	80.6 (6)	P2C51C52C53	-178.5 (3)
N2—Ag—P1—C21	74.73 (15)	C51—C52—C53—C54	0.3 (5)
N1—Ag—P1—C31	26.83 (17)	C52—C53—C54—C55	-0.3 (5)
P2—Ag—P1—C31	-155.60 (10)	C53—C54—C55—C56	1.0 (5)
N1'—Ag—P1—C31	32.9 (6)	C54—C55—C56—C51	-1.6 (5)
N2'—Ag—P1—C31	-35.7 (6)	C52—C51—C56—C55	1.6 (4)
N2—Ag—P1—C31	-41.50 (15)	P2C51C56C55	179.2 (2)
N1—Ag—P1—C61	-89.21 (17)	C21—P1—C61—P2 ⁱ	49.57 (18)
P2—Ag—P1—C61	88.35 (12)	C31—P1—C61—P2 ⁱ	160.67 (15)
N1'—Ag—P1—C61	-83.2 (6)	Ag—P1—C61—P2 ⁱ	-81.92 (16)
N2'—Ag—P1—C61	-151.7 (6)	C2—C1—N1—Ag	-174.5 (6)
N2—Ag—P1—C61	-157.54 (15)	C4—C12—N1—Ag	174.2 (5)
N1—Ag—P2—C51	24.36 (19)	C11—C12—N1—Ag	-3.4 (11)
N1'—Ag—P2—C51	17.9 (7)	P2—Ag—N1—C1	-85.9 (8)
N2'—Ag—P2—C51	90.1 (8)	N1'—Ag—N1—C1	-14 (18)
P1—Ag—P2—C51	-152.97 (11)	N2'—Ag—N1—C1	-178.9 (18)
N2—Ag—P2—C51	96.58 (17)	P1—Ag—N1—C1	92.5 (8)
N1—Ag—P2—C41	-89.44 (18)	N2—Ag—N1—C1	179.5 (9)
N1'—Ag—P2—C41	-95.8 (7)	P2—Ag—N1—C12	100.1 (7)
NOL 4 DO 041	-22.7(8)	N1' A σ N1 C12	172 (19)

P1—Ag—P2—C41	93.23 (11)	N2'—Ag—N1—C12	7.1 (17)
N2—Ag—P2—C41	-17.21 (16)	P1—Ag—N1—C12	-81.5 (8)
N1—Ag—P2—C61 ⁱ	152.98 (18)	N2—Ag—N1—C12	5.5 (7)
N1'—Ag—P2—C61 ⁱ	146.6 (7)	C9—C10—N2—C11	-0.7 (11)
N2'—Ag—P2—C61 ⁱ	-141.2 (8)	C9—C10—N2—Ag	168.8 (5)
P1—Ag—P2—C61 ⁱ	-24.35 (12)	C7—C11—N2—C10	-0.9 (11)
N2—Ag—P2—C61 ⁱ	-134.79 (17)	C12—C11—N2—C10	178.9 (7)
C31—P1—C21—C26	133.8 (2)	C7—C11—N2—Ag	-171.3 (5)
C61—P1—C21—C26	-117.8 (2)	C12—C11—N2—Ag	8.5 (9)
Ag—P1—C21—C26	18.2 (3)	N1—Ag—N2—C10	-176.9 (8)
C31—P1—C21—C22	-49.0 (3)	P2—Ag—N2—C10	70.2 (7)
C61—P1—C21—C22	59.4 (3)	N1'—Ag—N2—C10	-178.3 (19)
Ag—P1—C21—C22	-164.7 (2)	N2'—Ag—N2—C10	170 (15)
C26—C21—C22—C23	1.1 (4)	P1—Ag—N2—C10	-76.4 (7)
P1-C21-C22-C23	-176.0 (2)	N1—Ag—N2—C11	-7.2 (6)
C21—C22—C23—C24	-1.2 (5)	P2—Ag—N2—C11	-120.1 (6)
C22—C23—C24—C25	0.5 (5)	N1'—Ag—N2—C11	-8.7 (18)
C23—C24—C25—C26	0.3 (6)	N2'—Ag—N2—C11	-20(14)
$C_{24} - C_{25} - C_{26} - C_{21}$	-0.4(5)	P1 - Ag - N2 - C11	93 2 (6)
$C_{22} = C_{21} = C_{26} = C_{25}$	-0.3(5)	C6-C5-N3-O2	-61(8)
P1—C21—C26—C25	176.9 (3)	C4-C5-N3-O2	171.9 (7)
C_{21} = P1 = C_{31} = C_{36}	-27.8(3)	C6-C5-N3-O1	174 2 (5)
C_{61} = P1 = C_{31} = C_{36}	-1380(2)	C4-C5-N3-O1	-7.8(7)
A_{σ} P1 C31 C36	93 5 (2)	$N1 - A\sigma - N1' - C1'$	169 (23)
C_{21} P1 C_{31} C_{32}	161.8 (2)	$P^2 = A \sigma = N1' = C1'$	-81(5)
C_{61} = P1 = C_{31} = C_{32}	51.7(2)	$N2' - A\sigma - N1' - C1'$	-177(5)
A_{σ} P1 C31 C32	-769(2)	$P1 = A\sigma = N1' = C1'$	94 (5)
$C_{36} = C_{31} = C_{32} = C_{33}$	-1.3(4)	$N2_\Delta g_N1'_C1'$	-179(5)
P1_C31_C32_C33	1694(2)	$N1_4 g_{N1'} C12'$	-3(15)
$C_{31} - C_{32} - C_{33} - C_{34}$	0.3(4)	$P^{2}_{A\sigma} N^{1}_{V} C^{12}$	107(4)
$C_{32} - C_{33} - C_{34} - C_{35}$	0.8(4)	$N2' - A\sigma - N1' - C12'$	107(1)
$C_{33} - C_{34} - C_{35} - C_{36}$	-0.9(5)	$P1_A \sigma_N N1'_C 12'$	-79(5)
$C_{34} - C_{35} - C_{36} - C_{31}$	-0.1(4)	$N_{2}^{-} \Delta g_{-} N_{1}^{-} C_{12}^{-}$	9(4)
C_{32} C_{31} C_{36} C_{35}	12(4)	C9'-C10'-N2'-C11'	-4(7)
P1_C31_C36_C35	-169.2(2)	C9'-C10'-N2'-Ag	(7)
$C_{51} - P_{2} - C_{41} - C_{46}$	135.8 (2)	C7'-C11'-N2'-C10'	6(7)
$C61^{i}$ P2 C41 C46	27.2 (3)	C12'-C11'-N2'-C10'	-179 (5)
Ag_P2_C41_C46	-987(2)	C7'-C11'-N2'-Ag	-169(3)
C_{51} = P2 = C41 = C42	-489(2)	C12'-C11'-N2'-Ag	6(6)
$C(1^{i})$ P2 $C(1)$ $C(2)$	-1575(2)	$N1_{A_{a}} N2'_{C10'}$	178(5)
C01 - P2 - C41 - C42	7(5(2))	$\frac{1}{1} - \frac{1}{1} = \frac{1}$	170(3)
Ag = P2 = C41 = C42	/6.5 (2)	P2 - Ag - N2 - C10'	66 (4) 177 (5)
-40041042043	-0.5(4)	N1 - Ag - N2 - C10'	1//(5)
$P_2 = C_{41} = C_{42} = C_{43}$	-1/6.0(2)	P1 - Ag - N2' - C10'	-82 (4)
C41 - C42 - C43 - C44	-0.7 (5)	N2 - Ag - N2' - C10'	-15 (11)
C42—C43—C44—C45	1.2 (5)	N1 - Ag - N2' - C11'	-/(3)
C43—C44—C45—C46	-0.4 (5)	P2—Ag—N2'—C11'	-119 (4)
C42—C41—C46—C45	1.3 (4)	N1'—Ag—N2'—C11'	-8(4)

P2-C41-C46-C45	176.5 (2)	P1—Ag—N2'—C11'	93 (4)
C44—C45—C46—C41	-0.8 (5)	N2—Ag—N2'—C11'	160 (17)
C41—P2—C51—C52	114.9 (3)	C5'—C6'—N3'—O2'	-156 (3)
C61 ⁱ —P2—C51—C52	-136.2 (2)	C7'—C6'—N3'—O2'	23 (4)
Ag—P2—C51—C52	-1.6 (3)	C5'—C6'—N3'—O1'	16 (5)
C41—P2—C51—C56	-62.7 (3)	C7'—C6'—N3'—O1'	-166 (4)
Symmetry codes: (i) $-x$, $-y$, $-z+2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C35—H35A…F4 ⁱⁱ	0.93	2.54	3.409 (4)	155
C46—H46A…F5	0.93	2.50	3.398 (4)	163
Symmetry codes: (ii) $-x-1/2$, $y-1/2$, $-z+5/2$.				

